Zapomniany rejestr Intela
Jak nazywał się pierwszy komputer osobisty? Odpowiedź na to pytanie zależy od odpowiadającego. Według mieszczącego się w dolinie krzemowej Computer History Museum był to Kenbak-1.
Jak nazywał się pierwszy komputer osobisty? Odpowiedź na to pytanie zależy od odpowiadającego. Według mieszczącego się w dolinie krzemowej Computer History Museum był to Kenbak-1.
We wnętrzu jednego z moich retro gratów, czyli Radzieckiego kalkulatora Электроника МК-52, o którym przygotowałem już kiedyś artykuł „Электроника МК-52 – Radziecki kalkulator na orbicie”, jak i w pewnych kwestiach bliźniaczej do niego konstrukcji Электроника МК-61 znaleźć można dość tajemniczo wyglądające układy scalone.
Jakiś czas temu na jednym z popularnych serwisów aukcyjnych zauważyłem dość ciekawą ofertę. Był to moduł niewiadomego pochodzenia z niewielką lampą VFD, która to, jak podejrzewam, była główną motywacją sprzedającego, aby się go pozbyć. Wszakże konstrukcje fluorescencyjne sprzedają się dość dobrze, choć nie aż tak jak lampy Nixie. Jak entuzjasta różnego typu gratów z czasów słusznie minionego socjalizmu nie mogłem odpuścić sobie zakupu. Po kilku dniach dotarły do mnie paczka z trzema modułami, które opisze teraz nieco szerzej.
Wykonując pomiary napięcia stałego multimetrem, zazwyczaj nie zastanawiamy się nad jego dokładnością. Otrzymując wynik 5,1V, gdy spodziewamy się czegoś w okolicy 5V, zakładamy, że wskazanie multimetru jest poprawne, mówiąc sobie, że po prostu na wyjściu zasilacza, czy porcie USB komputera różnica potencjałów jest nieco wyższa od spodziewanej. Jednak czy na pewno? Nie możemy przecież tak wprost wykluczyć sytuacji, w której to aparatura pomiarowa generuje niezgodne z rzeczywistością wyniki. Czy w takim razie można w jakiś sposób określić „prawdziwe” napięcie na wspomnianym porcie USB? Niestety odpowiedź brzmi nie, zawsze skazani jesteśmy na pewną dokładność i wykonywane pomiary zawsze obarczone są jakimś błędem. Mniejszym bądź większym, w uroszczeniu można powiedzieć, że zależnym od klasy sprzętu pomiarowego, ale trzeba jednak pamiętać, że dokładność pomiarów wielkości elektrycznych to naprawdę obszerny temat, który poruszano już w wielu książkach i artykułach.
Współczesna mikroelektronika jest jednym z najdynamiczniej rozwijających się obszarów nauki i technologii. Jej znaczenie dla naszego codziennego życia jest ogromne, gdyż to właśnie dzięki mikroelektronice możemy korzystać z zaawansowanych urządzeń elektronicznych, takich jak smartfony, tablety czy laptopy, które stały się nieodłączną częścią naszej rzeczywistości. W dzisiejszym artykule zapraszamy do głębszego zanurzenia się w fascynujący świat krzemu, gdzie rozważymy budowę elementów takich jak tranzystorów i diod.
Współczesny świat nieustannie płynie ku przyszłości, napędzany niesamowitym postępem w dziedzinie technologii. Centralną rolę w tym dynamicznym procesie odgrywa elektronika, która stanowi podstawę większości urządzeń codziennego użytku. Jednym z kluczowych fundamentów elektroniki są struktury zwane układami scalonymi, które od lat rewolucjonizują naszą zdolność do przetwarzania informacji i komunikacji. Jednak, gdy zajrzymy w głąb elektronicznych chipów, zauważymy, że zbudowane są one ze struktur takich jak tranzystory, diody, rezystory, a nawet kondensatory. Elementy te umieszczane są wspólnie, na pojedynczym kawałku krzemu, przez co różną się znacząco od podobnych konstrukcji umieszczanych na płytkach drukowanych. W tym artykule opowiem wam nieco o krzemowych strukturach elektronicznych, czyli fundamencie dzisiejszego świata technologii.
W dzisiejszym, dynamicznym świecie elektroniki, nieustannie korzystamy z zaawansowanych technologii, które umożliwiają nam wykonywanie zadań szybciej, wydajniej i wygodniej. Jednym z najbardziej niezwykłych osiągnięć, które wpłynęło na naszą codzienną rzeczywistość, jest wynalezienie układu scalonego. Te niewielkie, lecz potężne komponenty elektroniczne, zawierające zazwyczaj setki, tysiące, a nawet miliony elementów na pojedynczej krzemowej płytce. Chipy zrewolucjonizowały nasz świat w sposoby, których wcześniej nie można było sobie nawet wyobrazić. Jednak chcąc zgłębić historię układów scalonych musimy cofnąć się aż do lat 20. XX wieku, do czasów konstrukcji lampowych.
Każdy, kto zaczyna zabawę z elektroniką wcześniej czy później spotyka na swojej drodze układ oznaczony numerem 555. Według wielu timer ten jest jednym z chipów, który zmienił świat. Ciężko się z tym nie zgodzić zwłaszcza biorąc pod uwagę skalę produkcji i mnogość zastosowań, o których powstawały nawet osobne książki. W tym materiale opowiem wam co nieco o tym wyjątkowym chipie.
Układy ALU, czyli jednostki arytmetyczno-logiczne są dzisiaj częścią każdego procesora. Dawniej były one produkowane jako pojedyncze, fizyczne układy scalone lub zbiór wielu chipów logicznych. W dzisiejszym materiale opowiem wam o budowie, historii i działaniu jednego z pierwszych układów ALU.